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ON AN APPROXTIMATION THEOREM OF KUPKA AND SMALE

by
M.M. Peixoto

Introduction.

We present here a somewhat simpler version of the proof of an
important approximation theorem of Kupka and Smale [1,2], concerning differ- )
ential equations defined on a compact manifold M. We also say something
about the non-compact case.

As is the case with their proofs, by which the present one is much
inspired, the whole matter is essentially a transversality affaire a la Thom
[3], and the present treatment makes this point even more clear. The simpli-
fication and streamlining introduced here stem from the use of a theorem of
P. Hartman (1.8) (which takes the place of many computations) and from the v
argument in (3.2) using the existence of a minimum 7T > O for the period of
the closed orbits. This last fact allows us to avoid a delicate argument
involving the iterates of the Poincare transformation and instead use a simple =«
transversality argument on the transformation itself.

The results of Kupka and Smale are equivalent, Smale working first
with diffeomorphisms and then extending the reéult to vector fields and Kupka,
as we do here, working directly with vector fields; the corresponding result
for diffeomorphisms then follows immediately. As for Kupka's work [2] an
equivalent but more palatable version of it can be found in his thesis at
IMPA, written in Portuguese. A weaker version of the theorem considered here
has been announced, without proof, by Markus [5]. For n = 2 the theorem
is contained in a previous result of the author [6]. Both Kupka and Smale
consider only the case where M is compact. At the end of the present
paper we extend their result to the case of an open manifold.

But in this extension the behavior at

9.

infinity is not taken into account at all and in this respect the problem
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may be considered to be wide open. Most of what follows was the object of a
series of three lectures given at the University of California at Berkeley
in the Summer of 1965, and thanks are due to 8. Smale, I. Kupka, C. Pugh,
M. Shub and R. Abraham for lively discussions. The author is also thank-
ful to R. Thom for comments on a previous draft of this paper.

1. Preliminaries.

Let M= M be a compact Cm-differentiable manifold and let ji
be the space of all Cr—vector fields X on M with the Cr-topology,
r 2 1. We suppose that a metric has been fixed in X , say by covering
M with a finite number of coordinate neighborhoods; X then becomes a
Banach space. We assume also that M 1is endowed with a Riemannian metric.

We now fix some terminoclogy and recall some definitions and
known results. See for instance [4], and for results not explicitly there,
the forthcoming lecture notes by the author.

(1.1) Call ¢t(X) or simply @,: M —>M the l-parameter group
of diffeomorphisms generated by a vector field X ¢ X .

(1.2) A singularity of X is a point p € M such that X(p) = O;
it is said to be generic if no eigenvalue of the Jacobian matrix of X at
p, dX(p), has zero real part.

(1.3) a) The stable (W') and unstable (W~) manifolds associated

to a generic singularity p are defined as follows. Let k , O £k = n,
be the number of eigenvalues of dX(p) with negative real part. The set
W' oof all points of M such that the trajectory of X through it tend
to p as t 9w 1is an immersed k-dimensional submanifold of M passing
through p 1i.e. there is an 1-1 immersion V: ﬁk - M such that ¥(0) = p,
k) + |

¥(R) = W In general, even if n = 2, W' is not a submanifold of M.

In a similar way, changing t 2= by t — -» in the above definition one gets the
(n-k)-dimensional unstable manifold W  associated to p.

b) There exists a (k-1)-dimensional sphere s - W+, transversal




to X, dividing W' into two connected components, the one containing
p being a k-dimensional ball B*. Considering all sufficiently small
arcs of geodesic starting at st and normal there to W' (and so along
(n-k) independent directions) one gets a (n-1)-dimensional manifold X',
with boundary, transversal to X. We say that X is a "fence" associated
to ST and clearly S' - 3B = B*' n =t . Now once S' and Z+ are
fixed there is a neighborhced % of X in % such that whenever Y ¢ 4
then Y is transversal to X' and has exactly one critical point p(Y)
such that the corresponding k-dimensional stable manifold W*(Y) intersects
=t at a (k-1)-dimensional sphere S+(Y) which is the boundary of a
k-dimensional ball B+(Y) containing p(Y) and contained in W+(Y).
Besides S+(Y) = 84B+(Y) = B+(Y) N =" can ve isotopically deformed onto
S+, the isotopy taking place in Zﬁ; and B+(Y) can be made arbitrarily
c’-close to B+ be taking % small enough. If K-n we put e S+.
In exactly the same manner we define X, S, B,... for the unstable
manifold W .

(1.4) The Poincaré transformation & associated to a closed

orbit v of X 1is defined as follows. Let p € v and call ¥ a cross-

section at p i.e. a small piece of an (n-1)-dimensional submanifold

of M containing p and transversal to X. There is no loss of generality
if we identify X with a neighborhood of the origin in Rn'l and put

P = 0. There exists a neighborhood of p, ZO(:Z Z , so small that when-
ever g € Zo the trajectory of X through q meets Z at a point which
we call ¢(q). If X is perturbed to X + ®X with BX C'-small then the

corresponding Poincaré transformation is changed to ¢ + & with &¢ Cr-small,

and conversely.

(1.5) A tubular neighborhood T(Y) of a closed orbit 7y is a




-1 .
neighborhood of ¥ having 7T as basis and Bn as fiber and they consitute
a fundamental system of neighborhoods of 7y ; they are always either diffeo-

morphic to the product st x gt (

solid torus) or to the corresponding twisted
product (Klein bottle Kp).

(1.6) a) A generic closed orbit y of X 1is one such that the

Jacobian matrix of ¢ at O, d¢(0), has no eigenvalue of modulo 1. If K,

0 £ k=n-1, is the nunber of such eigenvalues with modulo < 1 then the set
of all trajectories of X tending to ¥ as 1t —» (i.e. whose w-1limit set

is y) is an immersed (k + 1)-dimensiounal submanifold W' of M called the

stable manifold associated to 7y ; similarly one has the unstable manifold

W, of dimension (n-k), associated to 7. D) A result similar to (1.3b)

holds here with the difference that now B" is not a k-dimensional ball but
either a product st x g1 (solid torus) or the corresponding twisted product
and st =938" = B+ n 55 is no more a sphere.

(1.7) The stable and unstable manifolds Wf and W of 71 intersect
transveérsally along y, The connected component of W+ n Zo containing p = O,
v" is the stable manifold of ¢ at the fixed point p =0 € Zo(see 1.4). Similarly
we have the unstable manifold V- of ¢ at 0. Now it is easy to verify
that y being genericthe map ¥ : £ —Z X X defined by v(a) = (q,o(q))
is transversal to the diagonal A of X X X at (p,p). Also, if ¥ is
transversal to A at (p,p)e A (so that (p,p) 1is an isolated point of

A N (%)) then it is possible to make a c'-small change 8 in ¥ is

that &(0) = 0 and d(¥ + 8¥)(q) has no eigenvalue with modulo 1; besides
(v + &¥)(a) = (q,(¢+ B)(a)).
(1.8} Let

dx/dt = Ax + £(x) , f(0) =0, df(0) =0,



I . . . . . .
have 0 € R as a generic singularity and consider the associated linear

system dy/dt = Ay. Let o and A, respectively be the corresponding
y t

t
l-parameter group of diffeomorphisms. Then there is a homeomorphism T: x =y

1

defined in the neighborhood of the origin and such that A _ = 'I!DtT- . This

t
means that wt is topologically equivalent to A, . 5o the homeomorphism

T maps trajectories of the non-linear equation ontc trajectories of the

linear equation preserving the parametrization i.e. the t-interval between

two points on one integral curve is the same as the t interval between the

corresponding points on the image. There is also a corresponding theorem
n

for transformations ¢ : R® — R having a fixed point O with de(0) having

no eigenvalue with modulus 1. These results are due to Hartman [4].

2. The theorem.

T

Let 5% , 1=1,2,3, be the set of all X € X satisfying condition<

G,: the singularities of X are generic (and so finite in number)
G2: the closed orbits of X are generic
G§: the stable and unstable manifolds associated to the generic

singularities and closed orbits are transversal.

In dimension n = 2 condition G, says that there is no trajectory

3

connecting saddle points.

Iy
Let 912=gln%, 9= %, = %n %n% Recall that
a subset of X is called residual if it contains the countable intersection
of sets open and dense in X ; from Baire's theorem it is necessarily dense

in X , since X is a complete metric space. We now state the theorem of

Kupka and Smale.




Theorem. ¥ is residual in X.

The fact that f?; is open and dense in X is an easy consequence

of Thom's tranversality lemma, see for instance [6]. A natural way to prove

this theorem would then be to prove that f?; is residwal in .gi and that

f?% is residual in @Z. For technical reasons we proceed as follows.
Let T >0 be an integer and call:
X¥(T): the subset of gi. such that X e X¥(T) implies that all
closed orbits of X of period T are generic;
¥(T): the subset of ¥(T) such that when X ¢ ¥(T) then the
stable and unstable manifolds of all singularities and of

all closed orbits of X with period =T are transversal.

Since
00

g = -9125 = ?(T)

T=1

the theorem will be proved once we prove the following propositionms.
Proposition 1. {(T) is open and dense in X
Proposition 2. ¥(T) is residual in ¥(T).

We remark that since

x

g? = r\ X(T) ’

L T=1

from Proposition 1 it follows that ‘932 is residual in gi and so also in
X . We now proceed to the proof of these propositions after which the theorem

is proved.

3. Proof of Proposition 1.

To that end we need three Lemmas.




Lemma 1. If p is a singular point of X € % and T >0 then there is a
neighborhood U of p in M and a neighborhocod % of X in gl such
that whenever Y € % then Y has in U exactly one singular point p(Y) which

depends continuously on Y and every closed orbit of Y meeting U has period > T.

Proof. The part concerning U, and p(Y) follows from the fact that 9”1
is open and deuse in X. From (1.8) one gets that U may be taken so small
that every trajectory of X meeting U spends there a time > 2T. Now a
simple semi-continuity argument shows that there exists a neighborhood Y of
X in gl such that every trajectory of Y €% meeting U spends there a

time > T, proving Lemma 1.

An analogous holds for closed orbits.

Lemma 2. Let T >0 and 7y be a generic closed orbit of X € gl with
period sT. Then there is a tubular neighborhood V of Yy and a neighborhood
%2 of X in % every Y € 27 has a generic closed orbit Y(Y)CV and

besides, with the eventual exception of 7¥(Y) every closed orbit of Y meeting

V has period > T; y(Y) varies continuously with Y.

Proof. Let Y have period 7 =T and put N = 1+ [T/1] where the bracket

stands for the greatest integer contained in T/T . Referring to (1.4)-(1.6),
choose the cross-section X so small that ¢: ZO — X and all its iterates

¢k, k=1...,N have p=7y N X as the only fixed point. To 0% there is
associated the map \yk: Z‘.O — X XX and the graph of ¢k intersects generically the
diagonal of Z X £ at (p,p) and so this intersection is isolated. Now a

Cr- small change’ from X to Y gives raise to a Cr-small change in wk with

the result that the corresponding graph again intersects generically the diagonal.

From this it results that one may find neighborhoods V of 71 and Y of X




such that for Y €%  the corresponding Poincare transformation ¢(Y) and all
its iterates up to order N have only one fixed point, p(Y). To p(Y) there
corresponds for Y a generic closed orbit y(Y) C V and any other closed
orbit of Y meeting V corresponds to a fixed point of Ol(Y) with I > N.
Therefore its period T' is close to { times the period of Y(Y) and since
this one is very close to T, if %~ is small enough, we get that T' > 1N > T,

Lemma 2 1s proved. From Lemma 2 we get immediately the following.

Corollary. If X ¢ X(T) then X has only a finite number of closed orbits

of period = T.

Lemma 3. Let K be a compact subset of M and assume that no point of K

is a singularity or belongs to a closed orbit of a vector field X, of period
£ T. Then there exists a neighborhood % of X in X such that every closed

orbit of Y €% meeting K has period > T.

Proof. To every point in K we associate a neighborhood U of it in M and
a neighborhood 2 of X in 1‘ such that whenever Y €% then every closed
orbit of Y intersecting U has period > T. We then extract a finite covering
of K by sets U and call /4 the intersection of the corresponding 7” .
Lemma 3 is proved. |

We now prove

(3.1) X(T) 4is open in gl'

Proof. Let p €M be such that it is neither a singularity of X € %(T) or is
situated on a closed orbit of period = T. Let # be a neighborhood of X in
gl such that ﬁhenever Y € # then every closed orbit of Y meeting W has
period > T. If p 1s a singularity of X or is on one of its closed orbits

of period = T we apply Lemma 1 or Lemma 2 to get neighborhoods U and % or




V and %7. Since M is compact we find a finite number of U, V and W
covering M. The intersection of the correéponding %k, % and Y 4 contains
an open set made up of points of &(T), proving (3.1). To end the proof

of Proposition 1 we need only to prove that

(3.2) ¥(T) is dense in ﬁl'

Proof. Let X e ‘gl' We want to find Y € ¥ (T) arbitrarily close to X
and we do so by means of a finite number of successive modifications on X.

Let T >0 be such that no closed orbit of X has period léss than
7. Such T exists for otherwise we would find a sequence of closed orbits,
whose periods tend to zero, converging to a singular point of X; from (1.8)
this is clearly impossible.

Now let T = I'(1,31/2) be the set of all closed orbits of X whose
periods are within the closed interval [T,37/2] . Clearly TI' is a closed set
in M. We now cover every trajectory in I' by two concentric neighborhoods
V and U, VCVCU, and call £ and X', % C I' the corresponding
cross-sections; Z' 1is chosen so small that it meets every trajectory of T
just once. Since TI' is compact we extract from the covering a finite set

V., U k

i Yir Yy y =1

goecy

v, C V. C u , such that the V,'s cover T. Then,
from (1.4), by making a cF-small change in the Poincaré transformation, vanishing
outside Zl (cross-section corresponding to Vl) we get, by fransversality, a

. r
vector field Yi, C -close to X, agreeing eith X outside of U,, and such

that in V, every closed orbit of Y| of period = 31/2 1is generic. An

1
important point here is that by taking Yi close enough to X every closed
orbit of Yi in V1 which corresponds to m turns, m > 1, (i.e. to a fixed

point of the m-th iterate of the Poincaré transformation) has period close
to mT ,71s7T =S 5T/2 and so greater than 3T/2; every trajectory corresponding

to m=1 is generic. From the Corollary to Lemma 2
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it follows that, in Vl’ Yi has only a finite number of closed orbits of

period s37/2,

|

We now proceed as above and perturb Yl slightly inside U2 getting

a system Yé such that inside V all trajectories of Y2' of period = 31/2

2
are generic; from Lemma 2 one gets that for Yé close enough to Yl' then
we do not disturb the situation that we had before in Vl i.e. inside Vl v Vs

all trajectories of Yg' of period = 5T/2 are generic, Repeating this argument

up to Vk we obtain Y., = Yk' such that it is arbitrarily close to X and

1

besides all of its trajectories of period s 37/2 contained in V' = v,
i=1

are generic. Outside V', ¥ might have nongeneric closed orbits of period

1
s 31/2. But applying Lemma 3 with K = M-V' we see that for Y, close

enough to X all periodic orbits of Y. meeting K have period > 5T/2.

1

So all periocdic orbits of Yl of period = 51/2 are generic.

We now essentially repeat the procedure and work with the set P(31/2,2T)
of all closed orbits of Yl with period within the interval [31/2, 21}. Compared

with the previous case there is a little difference here namely that Y. may have

1
periodic orbits of period < 31/2 (whereas X had none of period < 7). But
these are generic and finite in number and we can find a neighborhood W of their
union disjoint from the U's employed in covering T(37/2, 27). We then do as
before taking K = M-V'-W and get Y2 such that all of its closed orbits of period
= 21 are generic.

Proceeding that way we have that [ being an integer such that ZT/2 > T,

Yl = Y can be made arbitrarily close to X and such that all of its closed orbits

of period s T are generic i.e. Y € #(T). This proves (3.2) and also Proposition 1.

4, Proof of Proposition 2,

To show that ¥%(T) 1is residual in 2(T) we need only to show that
(4.1) given any X e ¥(T) there exists a neighborhood % of X in
- ~
£ (T) such that Z(T) N % contains a residual set in %2.

To prove (4.1) let P, 1 =1,...,N be the critical elements of X
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{

j.e. its singularities and closed orbits of period =T; these are generic. Now
let U, and %i be neighborhoods of p; in M and X in .%(T), respectively,
such that whenever Y € %'1 then, inside Uy, Y has one and only omne critical
element pi(Y), as in Lemmas 1 and 2. Assume these Ui to be disjoint and that
one chooses the fences Z:f_ C U, and %, so small that Bi(Y) C U, and

meets Z;'- transversally when Y € %i ; see (1.3b) and 1.6b).

Define the "t-expansion", t >0, of the stable or unstable

Bi(Y) as
B(Y; 3 1) = 0 (DB{(D)  (see (L)) .

For t <0 we have a "t-contraction". To each pair of indices 1i,j, 1 =1,

j SN and integer T >0 define J?i(i,j;'r) as the set of all Y € %i n @J,:.— %ij
+ -

such that B;(Y; ¥ 1) is transversal to B;(Y; t 7). We now claim that to prove

(4.1) have only to prove that for every T >0
(k.2) _71(1,3'; T) 1is open and dense in %1:] .
In fact, from (4.2) it follows that

N
N F(L,55 9 = Fo)
i,3=1

N
is open' and dense in () %i =% .
i=1

Now (:.1) follows from the fact that
~ [+ 4}
o - N S .
=1

To prove (4.2) it is enough to prove that
(4.3) the set %(i,j ; 7) of all fields Y ¢ %ij such that B;(Y;T)

is transversal to B:;(Y; -1) 1is open and dense in %ij

Since the case of B;(Y;-T) and BS(Y; 1) 1is treated the same way.




We now proceed to prove (4.3),

That F(i,j ; 7) 1is open in ekij is quite obvious from (1.3b)
and from the standard fact that the tranversality condition is preserved under a
Cr-small perturbation of the manifold invloved, r 2z 1,

To prove density we show that %~ being any neighborhood of Y € Q%ij
then we can find Y € 27 N %#(4,j; ) and this is done as follows. If BE(Y; )
is transversal to B;(Y; -T) we take Y=Y If not, we make a small Cr-change
in these manifolds so as to put them transversally; after which it remains to
show that this change can be obtained by changing Y into Y. It is a
situation analogous to (1.4) but more complex. We proceed now to do this and
we consider first the case 1 # j .

From (1.3b) we can find v >0 so0 big and choose a neighborhood of
Y, 2, C 2 and the fence E = I so small that BJ(Z;-v)N B;.(Z;-'t) =8,
?v(Z)Z n B;(Z; -7) =f for Z e @i. From well known facts about the local

behavior of trajectories of differential equations we can choose the fence

Y. so small that the application

M ZX[-v, 7] »M
defined by

A(x, t) =q>t(Y)x , xe€% tel-v, 1]
be a diffeomorphism. The image
MEZx[-v, 1]) =L CM
is a manifold with boundary. Clearly
B(z, 7) N B;(Z; ) CL , Ze9,

if 9{ is small enough)so that we need only to care for what happens inside L.

e —————
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Let L, = q)T(Y)Z be a face of L and

c(7) = Bi(Y;«) 0 L
h 1
Since B_:L(Y; T) and B';.'(Y; -T) can only intersect along pieces of trajectories
of Y the fact that they are transversal at a given point implies that they are
transversal all along the common piece of trajectory passing through that point.
From this it follows that B](Y; ) and B:_Jf(y; -T) are transversal if and only
if @T(Y)S;(Y) is transversal to C(T) . We proceed to construct our field
Y e 1 in such a way that q)_r(:).{)s;(i-{) is transversal to C(Y; t) =

L; N B:;(Y; ) which implies that B;_(?; T) is transversal to _ﬁj (¥; -t), proving
(L.3) . Let €=o_(Y)C(t) be the compact manifold obtained by pulling back
C(t) to Z through the trajectories of Y. In £ we have then the two com-
pact sub-manifolds S;(Y) and C which may or may not be transversal., If
they are, we are through for then C(t) and cp,r(Y)S'i'(Y) are also transversal.

If not, we apply to T , SE(Y) and C a classical isotépy lemma of Thom

[3, p.26].

It follows then that given a neighborhood Q of aZ, disjoint from

C and S;(Y), and € >0 we can find a l-parameter family of diffeomorphisms
*s HEED HE ) 0sss1l

each C'-close to the identity by less than € and such that .

\_vl(S]f_(Y)) is transversal to C |,
v =1d in @,

a“\ys(x)/Bsn=0 for x €L, at s=0,1 and n= 1,2,...

(reparameterizing if necessary).
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From the isotopy ws we pass to the field Y as follows. Let
Vvt Z X [-v, 7] »E X [-v, 1]
be a diffeomorphism defined by

(x, t) if -vst

A
(o]

V(x, 1)
¥(x, t)

A
d.
A
a

(Vy/o(x), §) 1€ 0

We are then spreading the isotopy Ws between time t =0 and t = 7. This
induces in a natural way a deformation of the "horizontal" lines in I X [-v,7],
corresponding to the trajectories of Y in L, and the new lines so obtained
are the integral curves of Y. Precisely Y is defined as follows. Let
E = (0,1) be the horizontal unit field in I X [-v, 7], image through AT

of Y in L and define

Y(x)

Y(x)

Y(x) if x € M-L

A0V, E(W-lo X—l(x)) if x €L

H

where the star stands for differential. From the conditions satisfied by the
isotopy ws it follows that Y is in fact a vector field on M and it is

also clear that by choosing € small enough one has that Y € i}i. Clearly
+ + =
Bj(Y, -1} N Ll = BJ(Y, -7) N L, = c(rt) = ¢(Y, 7)

As remarked before we need only to show that C(t) 1is transversal to
@T(Y)S;(Y). Now from the way Y and M\ were defined we have S;(Y) = S{(?)

and

¢ (D)SI(Y) = M¥51(Y), 7) = My,8,(Y), )
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On the other hand C(7) = AM(C, 7). Since wl(?)s;(?) is transversal to C,
X(wl(?)SE(Y),T) is transversal to A(C, 1), completing the proof of (4.3) in
case 1 £ j.
To the case i = j we can apply the above argument with little
modification. In this case B;(Y; T) and B;(Y; -7) meet outside L along
the critical element pi(Y)' But there they are transversal so that again

only matters what happens inside I, and this goes unchanged. The proof of

Proposition 2 is now complete. The Theorem is proved.

5. The non compact case.

irf M= M" is non compact the Cr-topology, r 2 1, in the space
¥ of all vector fields in M 1is defined as follows. Let

(5.1) KlCKEC...CKiCK:.H_l...CM

be a decomposition of M into an expanding sequence of compact sets each

K, having non empty interior K, CK. .- If X e % and &=x) >0 is a

continuous function defined on M let

Si = inf &(x) , x € K, -K ; K, = @
(5.2)
AX,8(x)) = 0 (Y| a(x,Y; K.-K. P <8)
i=1 ot *
where d(X,Y; Ki-Ki l) stands for the usual c’-distance between X and Y

in K,-K. ;. When 8(x) varies in the set of positive continuous functions
on M the sets A(X,8(x)) form a basis in X for a system of neighborhoods
of a topology in %, which does not depend on the decomposition (5.1) or on
the metric chosen on each Ki. |

Vector fields in M are maps of M inot its tangent bundle T(M),

X: M - T(M), and Whitney [7] has introduced a c-topology in the set of mappings




16
of one manifold into another, The above topology is exactly the topology

that would arise that way and we call it the Cr-tOpology of Whitney in &
If M is compact we get the metrizable topology we had before, For a
non-compact M the Whitney topology in % 1s nonmetrizable but it has

the Baire property [8]. One might be tempted to consider instead of the
Whitney topology, say the compact open topology or the topology of uniform
convergence, both of which would make % metrizable. But the consideration
of a vector field X in R2 with infinitely many generic singularities
which as they go to infinity have their eigenvalues tending to zero shows
that in both of these topologies we may have a field Y very close to X
which no longer exhibits these singularities.Therefore these topologies are

no good for dealing with "generic" properties as we are doing here.
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The statement of the theorem of Kupa-Smale, in the compact
or the non-compact case is exactly the same. We now indicate the
straightforward modifications needed to cover the non-compact case.
We assume that the decamposition (5.1) has been chosen and use the

notations of paragraph 2.

(5.3) % is open and dense in % .

Proof. Follows from a transversality argument as in the
compact case.
Call
g (T3 Ki): the subset of elements X € %
such that every closed orbit of X which meets Ki
and is of period = T is generic.
¥(T; K;): the subset of %(T; K,) such that when X e Z(T; K,)
then the stable and unstable manifolds of the
singularities of X in Ki or of the closed orbits
of period = T meeting Ki are transversal.

We have, T and i being fixed,

5. 1) (T Ki) is open and dense in g’l

Proof, Let X e ¢ (T; Ki) then the argument of (3.1)
shows that there is a certain 8, > O such that whenever Y e A(X;Si)
then Ye g (T Ki) proving openess.

To prove density let X e% and let A(X; 8(x)),

5(x) >0 on M, be a neighborhood of X in ?l .
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Now repeating the argument of (3.2), for the case where we use
the compact set Ki in place of the compact manifold, it is easily seen

that one can get a vector field Y on M, Y € %(T;Ki), obtained by

perturbing X on a small neighborhood of Ki contained in Ki+l and
such that
. _. .é-

a(X,¥; Kj Kj_l) < Sj s, J=1i,
the &'s being as in (5.2). Since Y = X outside Ki+l it is quite
clear that Y e A(X, 8(x)) and so

Y € %(T;Ki) n A(X, &x)) ,
proving density and completing the proof of (5.4).
(5.5) % (T; Ki) is residual in % (T; Ki)

Proof, The argument used in the proof of

Proposition 2 can be carried through here with no essential differ-

ence.

We then have the theorem of Kupka-Smale:
(5.6) \é;— is residual in ¢
Proof., Follows immediately from (5.3), (5.4), (5.5) and from

the fact that
\g <] 0
= N n F(T.
= w1 o1 2T KD
From (5.4) it follows immediately that € (T) is

residual in ¥ but actually we can show that, as in the compact case,
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(5.7) % (T) is open and dense in ¢ .
Proof. Let X € Z(T) and let n; Dbe such that when-
ever d(X,Y; Ki) <ny then Ye z (T3 Ki) , see (5.4). Now

any continuous 7(x) >0 on M such that n(x) < ng for x eK,

is such that Y € A(X; n(x)) implies Y e % (T) and this proves

%Z(T) open density of Z(T) follows from (5.4).
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